Optimal Leaf Positions for SPAD Meter Measurement in Rice
نویسندگان
چکیده
The Soil Plant Analysis Development (SPAD) chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in rice (Oryza sativa L.). A flatbed color scanner was used to map the dynamic chlorophyll distribution and irregular leaf shapes. Calculus algorithm was adopted to estimate the potential positions for SPAD meter measurement along the leaf blade. Data generated by the flatbed color scanner and SPAD meter were analyzed simultaneously. The results suggested that a position 2/3 of the distance from the leaf base to the apex (2/3 position) could represent the chlorophyll content of the entire leaf blade, as indicated by the relatively low variance of measurements at that position. SPAD values based on di-positional leaves and the extracted chlorophyll a and b contents were compared. This comparison showed that the 2/3 position on the lower leaves tended to be more sensitive to changes in chlorophyll content. Finally, the 2/3 position and average SPAD values of the fourth fully expanded leaf from the top were compared with leaf nitrogen concentration. The results showed the 2/3 position on that leaf was most suitable for predicting the nitrogen status of rice. Based on these results, we recommend making SPAD measurements at the 2/3 position on the fourth fully expanded leaf from the top. The coupling of dynamic chlorophyll distribution and irregular leaf shapes information can provide a promising approach for the calibration of SPAD meter measurement, which can further benefit the in situ nitrogen management by providing reliable estimation of crops nitrogen nutrition status.
منابع مشابه
Rice Leaf Lateral Asymmetry in the Relationship between SPAD and Area-Based Nitrogen Concentration
Rice leaves display lateral asymmetry around the midrib, and the narrow side exhibits higher leaf area-based nitrogen concentration (Na) and soil plant analysis development (SPAD) values than the wider side. However, the difference in the relationship between the SPAD of each side and Na of the corresponding lateral half, and the optimal position along the leaf blade for SPAD measurements are n...
متن کاملLeaf Lateral Asymmetry in Morphological and Physiological Traits of Rice Plant
Leaf lateral asymmetry in width and thickness has been reported previously in rice. However, the differences between the wide and narrow sides of leaf blade in other leaf morphological and physiological traits were not known. This study was conducted to quantify leaf lateral asymmetry in leaf width, leaf thickness, specific leaf weight (SLW), leaf nitrogen (N) concentration based on dry weight ...
متن کاملCorrection: Effects of Nitrogen Application Rate and Leaf Age on the Distribution Pattern of Leaf SPAD Readings in the Rice Canopy
A Soil-Plant Analysis Development (SPAD) chlorophyll meter can be used as a simple tool for evaluating N concentration of the leaf and investigating the combined effects of nitrogen rate and leaf age on N distribution. We conducted experiments in a paddy field over two consecutive years (2008-2009) using rice plants treated with six different N application levels. N distribution pattern was det...
متن کاملSPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics
Chlorophyll meters are widely used to guide nitrogen (N) management by monitoring leaf N status in agricultural systems, but the effects of environmental factors and leaf characteristics on leaf N estimations are still unclear. In the present study, we estimated the relationships among SPAD readings, chlorophyll content and leaf N content per leaf area for seven species grown in multiple enviro...
متن کاملInvestigation of Phenology Events in a Broad Leaf Forest in Relation to Chlorophyll Content Change
Vegetation phenology, as used and studied the related studies, refers to the relationship between climate and periodic development of photosynthetic biomass. selected 15 Hornbeam plots (Carpinus betulus) from study area in a mountainous region from 520m to 1310m above sea level. Ground observations of hornbeam tree growth process from January to December 2004 in 15 day intervals were performed ...
متن کامل